NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity - Genome Biology

  • 📰 BioMedCentral
  • ⏱ Reading Time:
  • 89 sec. here
  • 3 min. at publisher
  • 📊 Quality Score:
  • News: 39%
  • Publisher: 71%

United Kingdom Headlines News

United Kingdom Latest News,United Kingdom Headlines

An article published in GenomeBiology presents NetAct: a computational platform for constructing and modeling core transcription factor regulatory networks using both transcriptomics data and literature-based transcription factor-target gene databases.

: Fig. S10). Taken together, we showed that the NetAct-constructed GRN model captures the multiple cellular state transitions during macrophage polarization.

In conclusion, we show that NetAct can identify the core TF-based GRN using both the literature-based TF-target database and the gene expression data. We also demonstrate how RACIPE-based mathematical modeling complements NetAct-based GRN inference in elucidating the dynamical behaviors of the inferred GRNs. Together, these two methods can be applied to infer biologically relevant regulatory interactions and the dynamical behavior of biological processes.

One of the key components of NetAct is a pre-compiled TF-target gene set database. Here, we have evaluated different types of TF-target databases in identifying knocked-down TFs using publicly available transcriptomics datasets. In this test, we have considered databases derived from the literature, gene co-expression, cis-motif prediction, and TF-binding motif data. Our benchmark tests suggest that the literature-based database clearly outperformed the other databases.

NetAct also has a unique approach to infer the TF activity from the gene expression of the target genes with the consideration of activation/inhibition nature. From our in silico benchmark tests, we found that NetAct outperforms major activity inference methods, owing to the design of the filtering step and the use of a high-quality TF-target database.

One potential issue is the assignment of the sign of TF activity, as it is algorithmically assigned according to the correlation with TF expression. In the case where the TF expression is very noisy or the expression is completely unrelated to TF activity, the sign assignment might be inaccurate. To deal with this issue, we have devised a semi-manual approach that identifies the sign of TF activity according to the sign of other interacting TFs.

Source: The AI Report (theaireport.net)

 

Thank you for your comment. Your comment will be published after being reviewed.
Please try again later.
We have summarized this news so that you can read it quickly. If you are interested in the news, you can read the full text here. Read more:

 /  🏆 22. in UK

United Kingdom Latest News, United Kingdom Headlines

Similar News:You can also read news stories similar to this one that we have collected from other news sources.

The swan genome and transcriptome, it is not all black and white - Genome BiologyBackground The Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information. Results Here, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan. Conclusion Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril.
Source: BioMedCentral - 🏆 22. / 71 Read more »

Researchers report on a genome-wide reconstruction of human microbes to develop personalized therapiesResearchers report on a genome-wide reconstruction of human microbes to develop personalized therapies Natureportfolio uniofgalway GenomeWide Reconstruction HumanMicrobes PersonalizedTherapy PersonalizedMedicine
Source: NewsMedical - 🏆 19. / 71 Read more »

Lentiviral in situ targeting of stem cells in unperturbed intestinal epithelium - BMC BiologyBackground Methods for the long-term in situ transduction of the unperturbed murine intestinal epithelium have not been developed in past research. Such a method could speed up functional studies and screens to identify genetic factors influencing intestinal epithelium biology. Here, we developed an efficient method achieving this long-sought goal. Results We used ultrasound-guided microinjections to transduce the embryonic endoderm at day 8 (E8.0) in utero. The injection procedure can be completed in 20 min and had a 100% survival rate. By injecting a small volume (0.1–0.2 μl) of concentrated virus, single shRNA constructs as well as lentiviral libraries can successfully be transduced. The new method stably and reproducibly targets adult intestinal epithelium, as well as other endoderm-derived organs such as the lungs, pancreas, liver, stomach, and bladder. Postnatal analysis of young adult mice indicates that single transduced cells at E8.0 gave rise to crypt fields that were comprised of 20–30 neighbouring crypts per crypt-field at 90 days after birth. Lentiviral targeting of ApcMin/+ mutant and wildtype mice revealed that heterozygous loss of Apc function suppresses the developmental normal growth pattern of intestinal crypt fields. This suppression of crypt field sizes did not involve a reduction of the crypt number per field, indicating that heterozygous Apc loss impaired the growth of individual crypts within the fields. Lentiviral-mediated shRNA knockdown of p53 led to an approximately 20% increase of individual crypts per field in both Apc+/+ and ApcMin/+ mice, associating with an increase in crypt size in ApcMin/+ mice but a slight reduction in crypt size in Apc+/+ mice. Overall, p53 knockdown rescued the reduction in crypt field size in Apc-mutant mice but had no effect on crypt field size in wildtype mice. Conclusions This study develops a novel technique enabling robust and reproducible in vivo targeting of intestinal stem cells in situ in the unperturb BMCBiology Your anti Vax paper and journal should be closed and retracted.
Source: BioMedCentral - 🏆 22. / 71 Read more »

Systematic characterization of seed overlap microRNA cotargeting associated with lupus pathogenesis - BMC BiologyBackground Combinatorial gene regulation by multiple microRNAs (miRNAs) is widespread and closely spaced target sites often act cooperatively to achieve stronger repression (“neighborhood” miRNA cotargeting). While miRNA cotarget sites are suggested to be more conserved and implicated in developmental control, the pathological significance of miRNA cotargeting remains elusive. Results Here, we report the pathogenic impacts of combinatorial miRNA regulation on inflammation in systemic lupus erythematosus (SLE). In the SLE mouse model, we identified the downregulation of two miRNAs, miR-128 and miR-148a, by TLR7 stimulation in plasmacytoid dendritic cells. Functional analyses using human cell lines demonstrated that miR-128 and miR-148a additively target KLF4 via extensively overlapping target sites (“seed overlap” miRNA cotargeting) and suppress the inflammatory responses. At the transcriptome level, “seed overlap” miRNA cotargeting increases susceptibility to downregulation by two miRNAs, consistent with additive but not cooperative recruitment of two miRNAs. Systematic characterization further revealed that extensive “seed overlap” is a prevalent feature among broadly conserved miRNAs. Highly conserved target sites of broadly conserved miRNAs are largely divided into two classes—those conserved among eutherian mammals and from human to Coelacanth, and the latter, including KLF4-cotargeting sites, has a stronger association with both “seed overlap” and “neighborhood” miRNA cotargeting. Furthermore, a deeply conserved miRNA target class has a higher probability of haplo-insufficient genes. Conclusions Our study collectively suggests the complexity of distinct modes of miRNA cotargeting and the importance of their perturbations in human diseases.
Source: medical_xpress - 🏆 101. / 51 Read more »

Rapid identification of mosquito species and age by mass spectrometric analysis - BMC BiologyBackground A rapid, accurate method to identify and to age-grade mosquito populations would be a major advance in predicting the risk of pathogen transmission and evaluating the public health impact of vector control interventions. Whilst other spectrometric or transcriptomic methods show promise, current approaches rely on challenging morphological techniques or simple binary classifications that cannot identify the subset of the population old enough to be infectious. In this study, the ability of rapid evaporative ionisation mass spectrometry (REIMS) to identify the species and age of mosquitoes reared in the laboratory and derived from the wild was investigated. Results The accuracy of REIMS in identifying morphologically identical species of the Anopheles gambiae complex exceeded 97% using principal component/linear discriminant analysis (PC-LDA) and 84% based on random forest analysis. Age separation into 3 different age categories (1 day, 5–6 days, 14–15 days) was achieved with 99% (PC-LDA) and 91% (random forest) accuracy. When tested on wild mosquitoes from the UK, REIMS data could determine the species and age of the specimens with accuracies of 91 and 90% respectively. Conclusions The accuracy of REIMS to resolve the species and age of Anopheles mosquitoes is comparable to that achieved by infrared spectroscopy approaches. The processing time and ease of use represent significant advantages over current, dissection-based methods. Importantly, the accuracy was maintained when using wild mosquitoes reared under differing environmental conditions, and when mosquitoes were stored frozen or desiccated. This high throughput approach thus has potential to conduct rapid, real-time monitoring of vector populations, providing entomological evidence of the impact of alternative interventions.
Source: BioMedCentral - 🏆 22. / 71 Read more »

Novel papillomaviruses identified in Malayan and Chinese pangolinsNovel papillomaviruses identified in Malayan and Chinese pangolins DNA Gene Genome Pangolin Papillomavirus Virology RSocPublishing UniofOxford
Source: NewsMedical - 🏆 19. / 71 Read more »