量子コヒーレンスは無制限に増幅可能、東大が理論解析で解明

  • 📰 weeklyascii
  • ⏱ Reading Time:
  • 21 sec. here
  • 5 min. at publisher
  • 📊 Quality Score:
  • News: 22%
  • Publisher: 51%

アスキー ニュース

ASCII,ASCII.Jp,角川アスキー総合研究所

東京大学の研究チームは、量子情報処理において貴重な資源とされている「量子コヒーレンス」に対し、「量子リソース理論」の枠組を用いて解析を実施。量子コヒーレンスは、無制限の増幅が可能であることを理論的に示した。

は、量子情報処理において貴重な資源とされている「量子コヒーレンス」に対し、「量子リソース理論」の枠組を用いて解析を実施。量子コヒーレンスは、無制限の増幅が可能であることを理論的に示した。 量子コンピュータなどの量子情報デバイスにおいて、「量子超越性」などのメリットを得るには、異なる量子状態の間の重ね合わせである「量子コヒーレンス」の存在が不可欠である。研究チームは今回、エネルギー保存則という、この世界に普遍的に課された制限の下で、異なるエネルギーを持つ状態の間のコヒーレンスをどこまで操作できるのか、という問題に理論解析で取り組んだ。

その結果、最初にわずかでも量子コヒーレンスが存在すれば任意の操作が可能であり、特に量子コヒーレンスをいくらでも増やすことが可能であることを明らかにした。この成果は、量子情報技術への応用が期待されるとともに、量子であることの特徴のひとつである量子コヒーレンスについての予想外の性質を明らかにするものでもあるという。 量子コヒーレンスは、「追加の補助」がなければ減っていく一方で、一度減ってしまった量子コヒーレンスを再び増やすことはできない。そこで、さまざまな追加の補助を用いることで、量子コヒーレンスに対する操作能力を上げようとする研究が活発になされている。しかしこれまでの研究では、補助がない場合と変わらない操作能力しか得られなさそうだという否定的な結果が多く得られていた。 研究論文は、フィジカルレビューレターズ(Physical Review Letters)に、2024年5月2日付けで

ASCII ASCII.Jp 角川アスキー総合研究所

 

コメントありがとうございます。コメントは審査後に公開されます。
このニュースをすぐに読めるように要約しました。ニュースに興味がある場合は、ここで全文を読むことができます。 続きを読む:

 /  🏆 94. in JP

日本 最新ニュース, 日本 見出し

Similar News:他のニュース ソースから収集した、これに似たニュース記事を読むこともできます。

生成AIを用いて画像内の情報を秘匿するシステム、東大が開発東京大学の研究チームは、生成AI技術を用いて、画像の「生成的コンテンツ置換(Generative Content Replacement:GCR)」を実行するシステムを開発。画像が含むプライバシーに関連する情報を秘匿化しつつ、画像の見た目や内容を維持することを可能にした。
ソース: asciijpeditors - 🏆 98. / 51 続きを読む »

磁性半金属の磁性をゲート電圧で変調することに成功=東大東京大学の研究チームは、磁性半金属と呼ばれる特殊な強磁性体において、強磁性転移温度、磁気異方性、磁気輸送特性などの性質をゲート電圧で変調し、強磁性転移温度の大幅な上昇、磁気異方性の完全な切り替えなどの変化を観測することに成功した。
ソース: asciijpeditors - 🏆 98. / 51 続きを読む »

持続可能な食生活、カギは「混合食」= 東大が提案東京大学の研究チームは、料理レベルでの持続可能な食生活を探求するために、新たに混合整数計画モデルを構築。同モデルを用いて、料理ごとの栄養価、価格、およびカーボンフットプリントを定量化し、「混合食」が栄養ニーズを満たしつつ環境への影響を低減する、より持続可能な料理であることを明らかにした。混合食とは、食材を肉、魚介、野菜などに分類するとき、単一の食材から成る料理ではなく、さまざまな食材を含む料理を指す。
ソース: asciijpeditors - 🏆 98. / 51 続きを読む »

細胞の中心小体の基本骨格形成メカニズムを解明=東大東京大学の研究チームは、あらゆる生物の細胞に共通して存在する構造体である「中心小体」の基本骨格である「三連微小管」の形成促進機構を解明した。中心小体は、細胞分裂やシグナル受容、精子運動など多岐にわたる生命現象を制御し、中心小体の構造破綻はがんや繊毛病、男性不妊などの原因となる。だがこれまで、中心小体の基本骨格である三連微小管が形成されるメカニズムや、制御分子の実体はわかっていなかった。
ソース: asciijpeditors - 🏆 98. / 51 続きを読む »

染色体上で二本鎖DNA切断が修復される仕組みを解明=東大東京大学の研究チームは、放射線などによって切断された二本鎖DNAの修復に中心的な役割を担うタンパク質「RAD51」が、染色体上で二本鎖DNA切断を検知して修復を開始する様子を明らかにした。さらに、RAD51の染色体への結合には、がん患者において変異が多数報告されているRAD51のアミノ末端領域が重要であることを発見。RAD51の機能不全を原因とするがん発症メカニズムの解明に貢献することが期待される。
ソース: asciijpeditors - 🏆 98. / 51 続きを読む »

銀河と超大質量ブラックホールの成長率に違い、東大チームが発見東京大学の研究チームは、すばる望遠鏡で発見された1万個を超える120億年以上昔の銀河に対してそのX線画像を解析。その時代の宇宙の大多数を占める一般的な銀河の中心に存在する超大質量ブラックホールの質量増加率が、従来の予想よりずっと低いことを明らかにした。
ソース: weeklyascii - 🏆 94. / 51 続きを読む »